Abstract

Being able to accurately predict bike-sharing demand is important for Intelligent Transport Systems and traveler information systems. These challenges have been addressed in a number of cities worldwide. This article uses Random Forest (RF) and k-fold cross-validation to predict the hourly count of rental bikes (cnt/h) in the city of Seoul (Korea) using information related to rental hour, temperature, humidity, wind speed, visibility, dewpoint, solar radiation, snowfall, and rainfall. The performance of the proposed RF model is evaluated using three statistical measurements: root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the RF model has high predictive accuracy with an RMSE of 210 cnt/h, an MAE of 121 cnt/h, and an R of 0.90. The performance of the RF model is also compared with a linear regression model and shows superior accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.