Abstract

The prediction of bathymetry has advanced significantly with the development of satellite altimetry. However, the majority of its data originate from marine gravity anomaly. In this study, based on the expression of vertical gravity gradient (VGG) of a rectangular prism, the governing equations for determining sea depths to invert bathymetry. The governing equation is solved by linearization through an iterative process, and numerical simulations verify its algorithm and its stability. We also study the processing methods of different interference errors. The regularization method improves the stability of the inversion process for errors. A piecewise bilinear interpolation function roughly replaces the low-frequency error, and numerical simulations show that the accuracy can be improved by 41.2 % after this treatment. For variable ocean crust density, simulation simulations verify that the root-mean-square (RMS) error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one. Finally, two test regions in the South China Sea are predicted and compared with ship soundings data, RMS errors of predictions are 71.1 m and 91.4 m, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call