Abstract

To explore machine learning (ML)-based breast tumor peritumoral (P)and intratumoral ultrasound radiomics signatures (IURS) for predicting axillary response to neoadjuvant chemotherapy (NAC) in patients with breast cancer (BC) with node-positive. A total of 435 patients were divided into hormone receptor (HR)+/human epidermal growth factor receptor (HER)2-, HER2+, and triple-negative (TN) subtypes. ML classifiers including random forest (RF), support vector machine (SVM), and linear discriminant analysis (LDA) were applied to construct PURS, IURS, and the combined P-IURS radiomics models. SVM of the TN subtype obtained the most favorable performance with an AUC of 0.917 (95%CI: 0.859, 0.960) in PURS models, RF of the HER2+ subtype yielded the highest efficacy in IURS models [AUC= 0.935 (95%CI: 0.843, 0.976)]. The RF-based combined P-IURS model of the HER2+ subtype improved the efficacy to a maximum AUC of 0.952 (95%CI: 0.868, 0.994). ML-based US radiomics can be a promising biomarker to predict axillary response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.