Abstract
Periodic environments may either enhance or suppress a population via resonant or attenuant cycles. We derive signature functions for predicting the responses of two competing populations to 2-periodic oscillations in six model parameters. Two of these parameters provide a non-trivial equilibrium and two provide the carrying capacities of each species in the absence of the other, but the remaining two are arbitrary and could be intrinsic growth rates. Each signature function is the sign of a weighted sum of the relative strengths of the oscillations of the perturbed parameters. Periodic environments are favourable for populations when the signature function is positive and are deleterious if the signature function is negative. We compute the signature functions of four classical, discrete-time two-species populations and determine regions in parameter space which are either favourable or detrimental to the populations. The six-parameter models include the Logistic, Ricker, Beverton–Holt, and Hassell models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.