Abstract

Molecular dynamics (MD) simulation is quickly growing in popularity as a technique for understanding asphaltene aggregate structure and dynamics. However, verification of the results of simulations against experimental data has, to date, been sparse. Here, we present total scattering data from Athabasca asphaltenes, as both a solid and dispersed at high concentrations in deuterated 1-methylnaphthalene. The advantage of total scattering is that the expected scattering can be calculated from knowledge of the atomic positions in the system of question, meaning that simulation and experiment can be directly compared. We find that the MD simulations for model monodisperse systems reproduce the general form of the scattering curves well, particularly for the slope and shape for the small-angle scattering curve of dispersed asphaltenes. However, we find a number of limitations in the MD techniques as commonly used in the literature; specifically, the size of the aggregates formed is considerably smaller than obs...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.