Abstract

Smart decision making at the tactical level is important for Artificial Intelligence (AI) agents to perform well in the domain of real-time strategy (RTS) games. This paper presents a Bayesian model that can be used to predict the outcomes of isolated battles, as well as predict what units are needed to defeat a given army. Model parameters are learned from simulated battles, in order to minimize the dependency on player skill. We apply our model to the game of StarCraft, with the end-goal of using the predictor as a module for making high-level combat decisions, and show that the model is capable of making accurate predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.