Abstract
Anxiety and depression are two important mental health problems among the geriatric population. They are often undiagnosed and directly or indirectly responsible for various morbidities. Early and timely diagnosis has immense effect on appropriate management of anxiety and depression along with its co-morbidities. Owing to time constraint and enormous patient load, especially in developing county such as India it is hardly possible for a physician or surgeon to identify a geriatric patient suffering from anxiety and depression using any psychometric analysis tool. So, it is of utmost importance to develop a predictive model for automated diagnosis of anxiety and depression among them. This Letter aims to develop an appropriate predictive model, to diagnose anxiety and depression among older patient from socio-demographic and health-related factors, using machine learning technology. Ten classifiers were evaluated with a data set of 510 geriatric patients and tested with ten-fold cross-validation method. Highest prediction accuracy of 89% was obtained with random forest (RF) classifier. This RF model was tested with another data set from separate 110 older patients for its external validity. Its predictive accuracy was found to be 91% and false positive (FP) rate was 10%, compared with gold standard tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.