Abstract

Materials with van der Waals-bonding are known to exhibit quantum confinement effect, in which the electronic bandgap of the three-dimensional (3D) realization of a material is lower than that of its two-dimensional (2D) counterpart. However, the possibility of an anomalous quantum confinement effect (AQCE) exists, where the bandgap trend is reversed. In this work, we computationally identify materials for which such AQCE occurs. Using density functional theory (DFT), we compute ~1000 OptB88vdW (semi-local functional), ~50 HSE06 and ~50 PBE0 (hybrid functional) bandgaps for bulk and their corresponding monolayers in the JARVIS-DFT database. OptB88vdW identifies 65 AQCE materials, but the hybrid functionals only confirm such finding in 14 cases. Some of the AQCE systems identified through HSE06 and PBE0 are: hydroxides or oxide hydroxide compounds (AlOH2, Mg(OH)2, Mg2H2O3, Ni(OH)2, SrH2O3) as well as Sb-halogen-chalcogenide compounds (SbSBr, SbSeI) and alkali-chalcogenides (RbLiS and RbLiSe). A detailed electronic structure analysis, based on band-structure and projected density of states, shows AQCE is often characterized by lowering of the conduction band in the monolayer and corresponding changes in the pz electronic orbital contribution, with z being the non-periodic direction in the 2D case. We believe our computational results would spur the effort to validate the results experimentally and will have impact on bandgap engineering applications based on low-dimensional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call