Abstract
AimExercise stress ECG is a common diagnostic test for stable coronary artery disease, but its sensitivity and specificity need to be further improved. In this paper, we construct a machine learning model for the prediction of angiographic coronary artery disease by HFQRS analysis of cycling exercise ECG.Methods and resultsThis study prospectively included 140 inpatients and 59 healthy volunteers undergoing cycling exercise ECG. The CHD group (N=104) and non-CHD group (N=95) were determined by coronary angiography gold standard. Automated HF QRS analysis was performed by the blinded method. The coronary group was predominantly male, with a higher prevalence of age, BMI, hypertension, and diabetes than the non-coronary group (P<0.001\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P<0.001$$\\end{document}), higher lipid levels in the coronary group (P<0.005\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P<0.005$$\\end{document}), significantly longer QRS duration during exercise testing (P<0.005\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P<0.005$$\\end{document}), more positive leads (P<0.001\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P<0.001$$\\end{document}), and a greater proportion of significant changes in HFQRS (P<0.001\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P<0.001$$\\end{document}). Age, Gender, Hypertension, Diabetes, and HF QRS Conclusions were screened by correlation analysis and multifactorial retrospective analysis to construct the machine learning models of the XGBoost Classifier, Logistic Regression, LightGBM Classifier, RandomForest Classifier, Artificial Neural Network and Support Vector Machine, respectively.ConclusionMale, elderly, with hypertension, diabetes mellitus, and positive exercise stress test HFQRS conclusions suggested a high risk of CHD. The best performance of the Logistic Regression model was compared, and a column line graph for assessing the risk of CHD was further developed and validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.