Abstract

AbstractAimSome threatened species are now recovering after a period of serious decline. Understanding and predicting the spatio‐temporal recolonization of these species in a heterogeneous landscape are important for their conservation planning. We aimed to predict the range expansion of the endangered Asian crested ibis Nipponia nippon as it recovers from near‐extinction to guide its in situ conservation and plan possible reintroductions.LocationCentral China.MethodsWe used a presence‐only ecological niche model to predict breeding habitat suitability and a newly developed, spatially explicit and individual‐based dynamic modelling platform to simulate range expansion. We performed a sensitivity analysis to assess the effects of uncertainty in demographic and dispersal parameters on the simulation of range dynamics. The impact of human‐induced mortality risk was also investigated.ResultsPredictions showed that the Asian crested ibis population and the range extent would continue to increase over the next 50 years, and the species would recolonize parts of its historical range. However, the majority of the population would still be restricted to a relatively small region, and some potential suitable regions might not be recolonized for decades by natural dispersal. Moreover, the simulated range dynamics were sensitive to life history trait parameters, among which adult survival probability and the proportion of long‐distance dispersal events showed the strongest effects. High human‐induced mortality risks had a significant negative effect on population growth and range expansion.Main conclusionsThis study demonstrates how hybrid modelling can inform conservation management of threatened species as they recolonize former habitat. The findings enable prioritization of management efforts, highlight the need for long‐term monitoring of the key life history parameters and provide evidence to guide the selection of potential reintroduction sites for the long‐term survival and recovery of target species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call