Abstract

Modern first-principles calculations based on density functional theory and related techniques enable the predictive modeling of the linear and nonlinear optical properties of materials without adjustable or empirical parameters. Today, atomistic calculations are an indispensable tool by which to understand the interrelationship between the underlying structure and the measured optical properties and are particularly suited for the design of new materials with desirable optical responses and performance. In this article, we discuss the first-principles design methodology, and we review recent results from the literature that exemplify the predictive power of the method for numerous inorganic materials and nanostructures. We also discuss topics of active research and future opportunities that will enable the wider adoption of atomistic simulation techniques for predictive materials design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call