Abstract
Anaerobic exercise is involved in many recreational and competitive sport activities. This study first established regression equations to predict maximal anaerobic power and then cross-validated these prediction equations. Using stepwise multiple regression analysis prediction equations for relative (watts per kilogram of body mass) and absolute (watts) mean and peak anaerobic power using the 30-second Wingate Test as the power measure were determined for 40 boys (age, 11-13 years). Percentage of body fat, free-fat weight, midthigh circumference, and 30-m dash were the independent predictive variables with the generated regression equations subsequently cross-validated using 20 different boys (age, 11-13 years). Significant correlations (Pearson r) were found for the cross-validation subjects between the measured power outputs and predicted power outputs for relative mean power (r = 0.48, p < 0.05), absolute mean power (r = 0.77, p < 0.01), and absolute peak power (r = 0.76, p < 0.01). Using paired t-tests, no significant mean differences (p > 0.05) were found for the same subjects between actual and predicted power outputs for relative mean power, absolute mean power, and absolute peak power. Prediction of maximal anaerobic power from selected anthropometric measurements and 30-m dash appears tenable in 11-13-year-old boys and can be accomplished in a simple cost- and time-effective manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.