Abstract

This study assessed how well longitudinally taken cognitive and functional scales from people with mild cognitive impairment (MCI) predict conversion to Alzheimer's disease (AD). Participants were individuals with baseline MCI from the Alzheimer's Disease Neuroimaging Initiative. Scales included the Alzheimer Disease Assessment Scale-Cognitive (ADAS-Cog) 11 and 13, the Mini Mental State Examination (MMSE), and the Functional Assessment Questionnaire (FAQ). A joint modelling approach compared performance on the four scales for dynamic prediction of risk for AD. The goodness of fit measures included log likelihood, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The area under the curve (AUC) of the receiver operating characteristic assessed predictive accuracy. The parameter α in the ADAS-Cog11, ADAS-Cog13, MMSE, and FAQ joint models was statistically significant. Joint MMSE and FAQ models had better goodness of fit. FAQ had the best predictive accuracy. Cognitive and functional impairment assessment scales are strong screening predictors when repeated measures are available. They could be useful for predicting risk for AD in primary healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.