Abstract

Air quality prediction plays an important role in the management of our environment. Computational power and efficiencies have advanced to the point where chemical transport models can predict pollution in an urban air shed with spatial resolution less than a kilometer, and cover the globe with a horizontal resolution of less than 50 km. Predicting air quality remains a challenge due to the complexity of the governing processes and the strong coupling across scales. While air quality prediction is closely aligned with weather prediction, there are important differences, including the role of pollution emissions and their associated large uncertainties. Improvements in air quality prediction require a close integration of observations. As more atmospheric chemical observations become available chemical data assimilation is expected to play an essential role in air quality forecasting. In this paper advances in air quality forecasting are discussed with an emphasis on data assimilation. Applications of the four-dimensional variational method (4D-Var) and the ensemble Kalman filter (EnKF) approach are presented and the computation challenges are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.