Abstract

The number of filaments in yarn cross-section, weave density, and weave type are considered the most important factors that affect the property of air permeability of multifilament woven fabrics. Microfilament yarns significantly affect the air permeability property of this type of fabric because of the low porosity between the filaments. This study deals with the development of a fuzzy logic model for predicting the air permeability of multifilament polyester woven fabrics produced from conventional and microfilament yarns. The polyester multifilament yarns used in this study were produced with three different microfilament fineness and two conventional filament fineness levels. The woven fabric samples used in this study were obtained in three weave types: plain, twill, and satin, and with five different weave densities. In accordance with the experimental test results, both regression analysis and fuzzy logic system were built. The air permeability results generated from the developed fuzzy model and the regression equations were compared with the experimental values. Satisfactory and accurate prediction results were obtained with the developed fuzzy logic model. The mean absolute error of the fuzzy model and regression analysis were found to be 2.32%, 12.59%, respectively. Therefore, it was confirmed that the fuzzy model was superior in predicting air permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call