Abstract

Owing to its association with a diverse range of human diseases, the determinants of protein aggregation are studied intensively. It is generally accepted that the effective aggregation tendency of a protein depends on many factors such as folding efficiency towards the native state, thermodynamic stability of that conformation, intrinsic aggregation propensity of the polypeptide sequence and its ability to be recognized by the protein quality control system. The intrinsic aggregation propensity of a polypeptide sequence is related to the presence of short APRs (aggregation-prone regions) that self-associate to form intermolecular β-structured assemblies. These are typically short sequence segments (5-15 amino acids) that display high hydrophobicity, low net charge and a high tendency to form β-structures. As the presence of such APRs is a prerequisite for aggregation, a plethora of methods have been developed to identify APRs in amino acid sequences. In the present chapter, the methodological basis of these approaches is discussed, as well as some practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.