Abstract
Revision total knee arthroplasty (TKA) is associated with a higher risk of readmission than primary TKA. Identifying individual patients predisposed to readmission can facilitate proactive optimization and increase care efficiency. This study developed machine learning (ML) models to predict unplanned readmission following revision TKA using a national-scale patient dataset. A total of 17,443 revision TKA cases (2013-2020) were acquired from the ACS NSQIP database. Four ML models (artificial neural networks, random forest, histogram-based gradient boosting, and k-nearest neighbor) were developed on relevant patient variables to predict readmission following revision TKA. The length of stay, operation time, body mass index (BMI), and laboratory test results were the strongest predictors of readmission. Histogram-based gradient boosting was the best performer in distinguishing readmission (AUC: 0.95) and estimating the readmission probability for individual patients (calibration slope: 1.13; calibration intercept: -0.00; Brier score: 0.064). All models produced higher net benefit than the default strategies of treating all or no patients, supporting the clinical utility of the models. ML demonstrated excellent performance for the prediction of readmission following revision TKA. Optimization of important predictors highlighted by our model may decrease preventable hospital readmission following surgery, thereby leading to reduced financial burden and improved patient satisfaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.