Abstract

Mammalian cGMP- and cAMP-dependent protein kinase show considerable similarity in amino acid sequence, although they specifically bind different cyclic nucleotides. Results of cGMP analogue binding experiments, combined with modeling of the cGMP binding sites by analogy to the structure of the homologous catabolite gene activator protein, suggest that a threonine residue forms a hydrogen bond with the 2-NH2 of cGMP. This threonine is invariant in all cGMP binding domains, but the corresponding residue in 23 out of 24 cAMP binding sites of protein kinases is alanine, which cannot form the same hydrogen bond. This alanine/threonine difference has the potential for discriminating between cAMP and cGMP and may be important in the evolutionary divergence of cyclic nucleotide binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.