Abstract
The question of how an individual bacterial cell grows during its life cycle remains controversial. In 1962 Collins and Richmond derived a very general expression relating the size distributions of newborn, dividing and extant cells in steady-state growth and their growth rate; it represents the most powerful framework currently available for the analysis of bacterial growth kinetics. The Collins-Richmond equation is in effect a statement of the conservation of cell numbers for populations in steady-state exponential growth. It has usually been used to calculate the growth rate from a measured cell size distribution under various assumptions regarding the dividing and newborn cell distributions, but can also be applied in reverse--to compute the theoretical cell size distribution from a specified growth law. This has the advantage that it is not limited to models in which growth rate is a deterministic function of cell size, such as in simple exponential or linear growth, but permits evaluation of far more sophisticated hypotheses. Here we employed this reverse approach to obtain theoretical cell size distributions for two exponential and six linear growth models. The former differ as to whether there exists in each cell a minimal size that does not contribute to growth, the latter as to when the presumptive doubling of the growth rate takes place: in the linear age models, it is taken to occur at a particular cell age, at a fixed time prior to division, or at division itself; in the linear size models, the growth rate is considered to double with a constant probability from cell birth, with a constant probability but only after the cell has reached a minimal size, or after the minimal size has been attained but with a probability that increases linearly with cell size. Each model contains a small number of adjustable parameters but no assumptions other than that all cells obey the same growth law. In the present article, the various growth laws are described and rigorous mathematical expressions developed to predict the size distribution of extant cells in steady-state exponential growth; in the following paper, these predictions are tested against high-quality experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.