Abstract

The quantum anomalous Hall (QAH) phase is a two-dimensional bulk ferromagnetic insulator with a nonzero Chern number in the presence of spin-orbit coupling (SOC) but in the absence of applied magnetic fields. Associated metallic chiral edge states host dissipationless current transport in electronic devices. This intriguing QAH phase has recently been observed in magnetic impurity-doped topological insulators, albeit, at extremely low temperatures. Based on first-principles density functional calculations, here we predict that layered rhodium oxide K_{0.5}RhO_{2} in the noncoplanar chiral antiferromagnetic state is an unconventional three-dimensional QAH insulator with a large band gap and a Néel temperature of a few tens of Kelvins. Furthermore, this unconventional QAH phase is revealed to be the exotic quantum topological Hall effect caused by nonzero scalar spin chirality due to the topological spin structure in the system and without the need of net magnetization and SOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call