Abstract

By the use of analytical expressions and SPICE simulation, the switching performance of integrated injection logic (I/sup 2/L) using heterojunction bipolar transistors (HBTs) has been investigated. A proposed inverter configuration using InP/InGaAs HBTs which avoids saturation in the p-n-p injector has predicted propagation delays of 16 ps at only 3-mW power dissipation. Transient response analysis illustrates the importance of reducing parasitic resistances in the structure. Ring oscillator simulations indicate that switching speeds approaching those of emitter-coupled logic but with advantages in high density and low power are possible. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.