Abstract

To predict engine performance and further instruct the integral engine design, a more reasonable and accurate numerical model of the two-phase underwater ramjet was introduced in this article by considering the bubble formation process. Two-fluid model was used to examine the bubbly flow in the nozzle and its mathematical model was solved by a fourth-order Runge–Kutta method. Subsequently, the influences of vessel velocity, gas mass flow rate, navigational depth, and orifice diameter of the bubble injector on the performance of the engine were discussed. Results show that, compared with convergent nozzle, Laval nozzle is proved to improve the thrust of the engine, especially at relatively high velocity and gas mass flow rate. With the other conditions fixed, there is an optimum vessel velocity for the ramjet, in which maximum thrust is generated. And a smaller orifice diameter always promotes the engine performance, while this promotion is negligible when the orifice diameter is smaller than 1 mm. Besides, increasing backpressure will cause serious performance drop, which means that the the two-phase underwater ramjet is only efficient for shallow depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call