Abstract

The effects of acute mercury exposure (118µg/L) on the marine copepod Tigriopus japonicus were examined at 22 and 25°C for 24h and compared with controls. Mercury accumulation and seven genes related to antioxidant/stress responses were analyzed after exposure. The 24-h LC50 value decreased in the warmer environment and mercury accumulation was elevated. Under both temperatures, mercury significantly affected the expression of all analyzed genes and probably caused oxidative stress. Intriguingly, at the same mercury concentration, most genes were upregulated at the higher relative to the lower temperature, and the copepods likely initiated more compensatory reactions to counteract increased mercury toxicity associated with the warmer temperature. Overall, this study suggests a molecular mechanism by which marine copepods could respond to future oceanic warming and mercury pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.