Abstract

Hydrides offer an opportunity to study high critical temperature (high-T c) superconductivity at experimentally achievable pressures. However, the pressure needed remains extremely high. Using density functional theory calculations, herein we demonstrate that a new rare earth hydride ErH2 could be superconducting with T c ∼ 80 K at 14.5 GPa, the lowest reported value for compressed hydrides to date. Intriguingly, due to Kondo destruction, superconductivity was prone to exist at 15 GPa. We also reveal an energy gap at 20 GPa on the background of normal metallic states. At 20 GPa, this compressed system could act as a host of superconductor judged from a sharp jump of spontaneous magnetic susceptibility with an evanescent spin density of state at Fermi level. Finally, electron pairing glue for ErH2 at these three typical pressures was attributed to the antiferromagnetic spin fluctuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call