Abstract

The critical current of a thin superconducting strip of width $W$ much larger than the Ginzburg-Landau coherence length $\ensuremath{\xi}$ but much smaller than the Pearl length $\ensuremath{\Lambda}=2{\ensuremath{\lambda}}^{2}/d$ is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with $H$ but then decreases more slowly with $H$ when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90${}^{\ensuremath{\circ}}$ or 180${}^{\ensuremath{\circ}}$ turns, the zero-field critical current at $H=0$ is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.