Abstract

The emittance and brightness of the electron beam generated during the hollow cathode phase of pseudospark operation are calculated using the two-dimensional hybrid fluid-particle model previously developed to study the time and space development of the plasma in a pseudospark discharge. Two distinct energy components exist in the electron beam; a high-energy component with an energy equivalent to the full discharge voltage and another, broad, low-energy component. In the 100 ns following breakdown and for the conditions of the calculations, the emittance of the high energy component decreases by an order of magnitude and the brightness of the high energy component reaches almost 10/sup 10/ A/m/sup 2/ rad/sup 2/. This work demonstrates the feasibility of using the model to guide the optimization of the pseudospark electron beam properties and shows that the optimum beam properties are achieved after the plasma has filled the hollow cathode and begun to expand radially in the main gap. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call