Abstract

The prospects for using piezoelectrically-driven valves with elastomeric or thermoplastic poppets in tritium gas service have been investigated. A modelling study of a typical valve incorporating ethylene-propylene rubber (EPR) or high density polyethylene (HDPE) was performed. Equations were developed linking applied voltage; ceramic bimorph preloading force, elastic deflection modulus, and specific deflection force (per volt applied); polymer elastic modulus, thickness, seal surface area, and compression (to make seal); elastomer compression set; thermoplastic creep modulus; and flow gap between seat and polymer tip. It was determined that, while EPR should seal the valve orifice more easily, HDPE should produce a valve flow rate vs. voltage curve less variant with time and exposure. Both should, however, be sealable and allow flow curves perturbed by less than or equal to 10% of full scale after ~100 days of exposure to 10{sup}5 Pa (1 atm) T{sub}2 gas (equivalent to ~7 x 10{sup}7 rad = 7 x 10{sup}5 Gy dosage).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.