Abstract

Conventional wastewater treatment simulation programs use a "lumped" approach, where process rates are calculated using bulk concentrations of biomass and microbial storage products. A recently developed distributed, or agent-based, approach, where individual bacteria are modeled to account for their potentially variable hydraulic experiences, was applied to the 5-stage Bardenpho process, a type of enhanced biological phosphorus removal (EBPR) that includes internal recycle flows, which were hypothesized to affect distributed state development. Consistent with previous results, the EBPR predicted performance was worse according to the distributed approach than the lumped approach. In addition, increasing the internal recycle rate increased the anoxic reactor nitrate concentrations, tending to decrease EBPR performance. However, in the distributed approach, differences in the state distributions in internal recycle-linked reactors decreased with increasing recycle flow, tending to improve EBPR. These phenomena tend to have simultaneous and opposite effects on EBPR. The net effect will depend largely on the specific systems and the nitrate concentration in anoxic reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.