Abstract

NMR chemical shifts provide a sensitive probe of protein structure and dynamics but remain challenging to predict and interpret. We examine the effect of protein conformational distributions on 15N chemical shifts for dihydrofolate reductase (DHFR), comparing QM/MM predicted shifts with experimental shifts in solution as well as frozen distributions. Representative snapshots from MD trajectories exhibit variation in predicted 15N chemical shifts of up to 25 ppm. The average over the fluctuations is in significantly better agreement with room temperature solution experimental values than the prediction for any single optimal conformations. Meanwhile, solid-state NMR (SSNMR) measurements of frozen solutions at 105 K exhibit broad lines whose widths agree well with the widths of distributions of predicted shifts for samples from the trajectory. The backbone torsion angle ψi-1 varies over 60° on the picosecond time scale, compensated by φi. These fluctuations can explain much of the shift variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call