Abstract

Recent research suggests that stock returns are predictable from fundamentals such as dividend yield, and that the degree of predictability rises with the length of the horizon over which return is measured. This paper investigates the magnitude of two sources of small simple bias in these results. First, it is a standard result in econometrics that regression on the lagged value of the dependent variable is biased in finite samples. Since a fundamental such as the price/dividend ratio is a statistical proxy for lagged price, predictive regressions are potentially subject to a corresponding small sample bias. This may create the illusion that one can buy low and sell high in the sample even if the relationship is useless for forecasting. Second, multiperiod returns are positively autocorrelated by construction, raising the possibility of spurious regression. Standard errors which are computed from the asymptotic formula may not be large enough in small samples. A set of Monte Carlo experiments are presented in which data are generated by a version of the present value model in which the discount rate is constant so returns are not in fact predictable. We show that a number of the characteristica of the historical results can be replicated simply by the combined effects of the two small sample biases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.