Abstract

Dual-band infrared absorbers have received a great deal of attention for their potential applications in the field of sensing and detection. In this paper, we proposed a composite model consisting of Platinum nano-cylinder and micro-ring column stacked on top of Si3N4 and Platinum films. The effect of geometrical parameters on spectral absorption was explored by finite difference in time domain methods, and the results revealed that there were narrow perfect absorption peaks in each of the two atmospheric window bands due to the magnetic polaritons. Meanwhile, the quantitative relationship of resonance wavelength and geometrical parameters were predicted by LC equivalent circuits. In addition, graphene was added to the structure to dynamically adjust the resonance wavelength by varying the Fermi level. The combination of graphene and microstructure achieved full coverage detection of wavelengths in the atmospheric window range. This dual-band absorber has potential applications in infrared detection because of its good absorption properties and its tunability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call