Abstract

Virtualization and just-in-time (JIT) compilation have become important paradigms in computer science to address application portability issues without deteriorating average-case performance. Unfortunately, JIT compilation raises predictability issues, which currently hinder its dissemination in real-time applications. Our work aims at reconciling the two domains, i.e. taking advantage of the portability and performance provided by JIT compilation, while providing predictability guarantees. As a first step towards this ambitious goal, we study two structures of code caches and demonstrate their predictability. On the one hand, the studied binary code caches avoid too frequent function recompilations, providing good average-case performance. On the other hand, and more importantly for the system determinism, we show that the behavior of the code cache is predictable: a safe upper bound of the number of function recompilations can be computed, enabling the verification of timing constraints. Experimental results show that fixing function addresses in the binary cache ahead of time results in tighter Worst Case Execution Times (WCETs) than organizing the binary code cache in fixed-size blocks replaced using a Least Recently Used (LRU) policy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call