Abstract
Abstract The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are investigated using TC best track data. The results show that the predictability limit of the TC minimum central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.