Abstract

The use of appropriately sized implants is critical for achieving optimal gap balance following total knee arthroplasty (TKA). Inappropriately sized implants could result in several complications. Robot-assisted TKA (RA-TKA) using CT-based pre-operative planning predicts implant sizes with high accuracy. There is scant literature describing the accuracy of image-free RA-TKA in predicting implant sizes. The purpose of this study was to assess the accuracy of an image-free robotic system in predicting implant sizes during RA-TKA. Patients who underwent cruciate-retaining RA-TKA for primary osteoarthritis, using an image-free hand-held robotic system were studied. The predicted and implanted sizes of the femoral component, tibial component and polyethylene insert, for 165 patients, were recorded. Agreement between robot-predicted and implanted component sizes was assessed in percentages, while reliability was assessed using Cohen's weighted kappa coefficient. The accuracy of the robotic system was 63% (weighted-kappa = 0.623, P < 0.001), 94% (weighted-kappa = 0.911, P < 0.001) and 99.4% (weighted-kappa = 0.995, P < 0.001), in predicting exact, ± 1 and ± 2 sizes of the femoral component, respectively. For the tibial component, an accuracy of 15.8% (weighted-kappa = 0.207, P < 0.001), 55.8% (weighted-kappa = 0.378, P < 0.001) and 76.4% (weighted-kappa = 0.568, P < 0.001) was noted, for predicting exact, ± 1 and ± 2 sizes respectively. An accuracy of 88.5%, 98.2% and 100%, was noted for predicting exact, ± 1 and ± 2 sizes of the polyethylene insert respectively. Errors in predicting accurate implant sizes could be multi-factorial. Though the accuracy of image-free RA-TKA with respect to alignment and component positioning is established, the surgeon's expertise should be relied upon while deciding appropriate implant sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.