Abstract

The objective of this work is to evaluate the potential of reduced order models to reproduce the extreme event and predictability characteristics of higher dimensional dynamical systems. A nonlinear toy model is used which contains key features of comprehensive climate models. First, we demonstrate that the systematic stochastic mode reduction strategy leads to a reduced order model with the same extreme value characteristics as the full dynamical models for a wide range of time-scale separations. Second, we find that extreme events in this model follow a generalized Pareto distribution with a negative shape parameter; thus extreme events are bounded in this model. Third, we show that a precursor approach has good forecast skill for extreme events. We then find that the reduced stochastic models capture the predictive skill of extreme events of the full dynamical models well. Consistent with previous studies we also find that the larger the extreme events, the better predictable they are. Our results suggest that systematically derived reduced order models have the potential to be used for the modeling and statistical prediction of weather- and climate-related extreme events and, possibly, in other areas of science and engineering too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.