Abstract

Summary One method to access unconventional heavy-crude-oil resources as well as residual oil after conventional recovery operations is to apply in-situ combustion (ISC) enhanced oil recovery. ISC oxidizes in place a small fraction of the hydrocarbon, thereby providing heat to reduce oil viscosity and increase reservoir pressure. Both effects serve to enhance recovery. The complex nature of petroleum as a multicomponent mixture and the multistep character of combustion reactions substantially complicate analysis of crude-oil oxidation and the identification of settings where ISC could be successful. In this study, isoconversional analysis of ramped temperature-oxidation (RTO) kinetic data was applied to eight different crude-oil samples. In addition, combustion-tube runs that explore ignition and combustion-front propagation were carried out. By using experimentally determined combustion kinetics of eight crude-oil samples along with combustion-tube results, we show that isoconversional analysis of RTO data is useful to predict combustion-front propagation. Isoconversional analysis also provides new insight into the nature of the reactions occurring during ISC. Additionally, five of the 10 crude-oil/rock systems studied employed a carbonate rock. No system displayed excessive oxygen consumption resulting from carbonate decomposition at combustion temperatures. This result is encouraging as it contributes to widening of the applicability of ISC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.