Abstract

Abstract The fastest perturbation growth (optimal growth) in forecasts of El Nino–Southern Oscillation (ENSO) with the Zebiak and Cane model is analyzed by singular value decomposition of forward tangent models along forecast trajectories in a reduced EOF space. The authors study optimal growth in forecast runs using two different initialization procedures and discuss the relationship between optimal growth and forecast skill. Consistent with Part I of this work, one dominant growing singular vector is found. Most of the variation of optimal growth, measured by the largest singular value, for warm events and mean condition is seasonal, attributable to the seasonal variations in the background states. For cold events the seasonal optimal growth is substantially suppressed. The first singular vector is approximately white in EOF space, while its final pattern after a 6-month evolution is dominated by the first EOF. The energy norm amplifies between 5- and 24-fold in 6 months. This indicates that small-scale...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call