Abstract
Models of inflationary cosmology can lead to variation of observable parameters (``constants of nature'') on extremely large scales. The question of making probabilistic predictions for today's observables in such models has been investigated in the literature. Because of the infinite thermalized volume resulting from eternal inflation, it has proved difficult to obtain a meaningful and unambiguous probability distribution for observables, in particular due to the gauge dependence. In the present paper, we further develop the gauge-invariant procedure proposed in a previous work for models with a continuous variation of ``constants.'' The recipe uses an unbiased selection of a connected piece of the thermalized volume as sample for the probability distribution. To implement the procedure numerically, we develop two methods applicable to a reasonably wide class of models: one based on the Fokker-Planck equation of stochastic inflation and the other based on direct simulation of inflationary spacetime. We present and compare results obtained using these methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.