Abstract

Associative classification is rule-based involving candidate rules as criteria of classification that provide both highly accurate and easily interpretable results to decision makers. The important phase of associative classification is rule evaluation consisting of rule ranking and pruning in which bad rules are removed to improve performance. Existing association rule mining algorithms relied on frequency-based rule evaluation methods such as support and confidence, failing to provide sound statistical or computational measures for rule evaluation, and often suffer from many redundant rules. In this research we propose predictability-based collective class association rule mining based on cross-validation with a new rule evaluation step. We measure the prediction accuracy of each candidate rule in inner cross-validation steps. We split a training dataset into inner training sets and inner test sets and then evaluate candidate rules’ predictive performance. From several experiments, we show that the proposed algorithm outperforms some existing algorithms while maintaining a large number of useful rules in the classifier. Furthermore, by applying the proposed algorithm to a real-life healthcare dataset, we demonstrate that it is practical and has potential to reveal important patterns in the dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.