Abstract

In this paper, we present a new simulator called pRediCS for the calculation of electromagnetic scattering and radar cross-section (RCS) from electrically large and complex targets. The simulator utilizes the geometric optics (GO) theory and launching of electromagnetic rays for tracing and calculating the electric field values as the electromagnetic waves bounce around the target. The physical optics (PO) theory is also exploited to calculate the final scattered electric field by calculating the far-field PO integration along the observation direction. The simulator is first tested with known objects of canonical shapes, whose analytical solutions are available in the literature. Next, our implemented GO-PO-type algorithm is validated by simulating the benchmark targets that have been well studied and documented by various studies. Finally, the RCS computation from complex and electrically large objects is calculated. By utilizing the RCS values for different frequencies and aspects, a successful inverse synthetic aperture radar image of the target with fast simulation time is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.