Abstract

Extrusion-based concrete 3D printing is an emerging construction technique to build the desired structure layer by layer without using any type of formwork. Hence, the printable concrete requires to achieve adequate strength to support the self-weight and subsequent layers in short period of time. This paper aims to identify the strength-based failure limits of 3D printing concrete through experimental and numerical procedure. The 3D Printing experiments were carried out to obtain the height of failure (i.e., number of printed layers before failure). The important rheological parameters of 3D printable concrete mixes were estimated experimentally and used in a numerical simulation as well as in theoretical equations to compare the results. The strength-based failure criterion for 3D printed object was developed and validated numerically using FLAC 3D (i.e., Fast Lagrangian Analysis of Continua). The time-dependent material behaviour was considered in the numerical analysis and the failure mode and the failure heights were modelled and compared with the experimental values. It was found that the experimental results and the numerical simulation results are comparable and the numerical simulation can be used as a reliable tool to decide the rheological parameters of 3D printing concrete for preventing the strength based failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.