Abstract
The sensory quality ranking of Japanese green tea (Sen-cha) was evaluated and predicted using volatile profiling and multivariate data analyses. The volatile constituents were extracted from tea infusion using vacuum hydrodistillation and analyzed using GC/MS. A quality of green tea could be discriminated to a high or low grade regarding the volatile profile by partial least squares discriminant analysis (PLS-DA). A quality ranking predictive model was developed from the relationship between subjective attributes (sensory quality ranking) and objective attributes (volatile profile) using partial least squares projections to latent structures together with the preprocessing filtering technique, orthogonal signal correction (OSC). Several volatile compounds highly contributed to model prediction were identified as various odor-active compounds, including geraniol, indole, linalool, cis-jasmone, dihydroactinidiolide, 6-chloroindole, methyl jasmonate, coumarin, trans-geranylacetone, linalool oxides, 5,6-epoxy-β-ionone, phytol, and phenylethyl alcohol. The whole fingerprints of these volatile compounds could be possible markers for the overall quality evaluation of green tea beverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.