Abstract

AbstractEver since the seminal work by Yu and Eberly [Phys. Rev. Lett. 93, 140404 (2004)], it has become widely accepted that nonlocal entanglement is more fragile than local coherence, in the sense that even under the influence of pure vacuum noise, the two‐qubit entanglement may end within a finite time, while the single‐qubit coherence always decays exponentially. By contrast, in this paper, it is shown that, for a pair of rotating qubits under pure vacuum noise with appropriate orbital radius and angular velocity, nonlocal entanglement as compared to local coherence is not only more resilient against vacuum noise to be preserved in the steady‐state for initially entangled states, but more importantly is also predestined to be created and be preserved for initially separable states. The generation of predestined entanglement here is essentially different from the dissipative steady‐state entanglement generation in existing schemes insofar as it is inevitably generated in pure vacuum instead of an elaborately designed environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.