Abstract

This paper’s primary motivation is to present a globally predefined-time sliding mode control (PtSMC) strategy to stabilize a class of second-order systems subjected to matched and mismatched disturbances. To achieve this, the paper proposes a new exact time disturbance observer (DOB) based on a terminal time regulator, which accurately estimates the disturbances within a prescribed time, effectively preventing the system state from escaping to infinity due to high gains and overestimation. In addition, a new predefined-time sliding mode variable with the estimation of DOB is developed to ensure a predefined-time convergence on the sliding mode phase against mismatched disturbances. The proposed DOB-based technique can alleviate the chattering resulting from the use of an overestimated gain, in contrast to the controller without employing a DOB. Furthermore, a predefined-time reaching law is introduced to guarantee a global predefined-time convergence. This paper establishes the stability of the disturbed second-order system under the proposed controller through strict Lyapunov analysis. The novelty of the proposed method lies in its global predefined-time convergence, chattering-reduced properties and robustness against matched and mismatched disturbances. Finally, numerical simulations and application examples validate the proposed methodology’s effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.