Abstract

This paper addresses the predefined-time distributed optimization of nonlinear multi-agent system using a hierarchical control approach. Considering unknown nonlinear functions and external disturbances, we propose a two-layer hierarchical control framework. At the first layer, a predefined-time distributed estimator is employed to produce optimal consensus trajectories. At the second layer, a neural-network-based predefined-time disturbance observer is introduced to estimate the disturbance, with neural networks used to approximate the unknown nonlinear functions. A neural-network-based anti-disturbance sliding mode control mechanism is presented to ensure that the system trajectories can track the optimal trajectories within a predefined time. The feasibility of this hierarchical control framework is verified by utilizing the Lyapunov method. Numerical simulations are conducted separately using models of robotic arms and mobile robots to validate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call