Abstract
This article focuses on an adaptive dynamic surface tracking control issue of nonlinear multiagent systems (MASs) with unmodeled dynamics and input quantization under predefined accuracy. Radial basis function neural networks (RBFNNs) are employed to estimate unknown nonlinear items. A dynamic signal is established to handle the trouble introduced by the unmodeled dynamics. Moreover, the predefined precision control is realized with the aid of two key functions. Unlike the existing works on nonlinear MASs with unmodeled dynamics, to avoid the issue of "explosion of complexity," the dynamic surface control (DSC) method is applied with the nonlinear filter. By using the designed controller, the consensus errors can gather to a precision assigned a priori. Finally, the simulation results are given to demonstrate the effectiveness of the proposed strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.