Abstract

<p>Plankton constitutes the productive base of marine ecosystems and plays an important role in the global carbon dioxide cycle through the process of photosynthesis. The impact of ocean hydrodynamic conditions on the biological activity of plankton species has been a subject attracting the interest of researchers during several decades. In the present study, we perform a well-resolved direct numerical simulation of a turbulent flow around an island, coupled to a predator–prey model of planktonic population dynamics, with the aim of investigating the conditions under which an algal bloom is observed.<span>  </span>The impact on the plankton dynamics of the turbulent regime as well as of the island shape is studied, through the investigation of spectra of velocity and plankton population density. Moreover, we focus on the correlation between the flow structures and the plankton patchiness, particularly by analyzing the effect of the sub-grid<span> </span>scale dynamics. The main outcome is that the response and the spatial distribution of plankton depend crucially on the relation between the time scale associated to the flow and the time related to biological growth, while they are fairly independent on the geometrical details of the obstacle.<span> </span></p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.