Abstract

Development rate polymorphism describes the scenario in which individuals exhibit distinct differences in their rate of development resulting in slow and fast developers even from the same clutch of eggs. Previously we showed that in ladybird, Propylea dissecta fast developers have higher foraging and predation rates than slow developers. But correlation between foraging efficacies with reproductive output of female remains unexplored. We selected slow and fast developmental rate for 15 generations in a P. dissecta and assessed female functional response and numerical response by using varying prey biomasses (A. pisum). We evaluated predatory parameters: prey consumption, attack rate, handling time, and the reproductive measures: number of eggs laid, egg, and body biomass conversion efficiencies. Overall, both group of P. dissecta showed increased prey biomasses curvilinear for consumption rate demonstrating the physiological capacity of foraging for food are mutually exclusive behaviors (i.e., Holling's Type-II functional response). Consumption rate and proportion of prey consumed was higher, and prey handling time was shorter, in experimental fast developers. However, prey attack rate was higher in experimental slow developers. The functional response of experimental fast developers got elevated whereas got depressed for control slow-fast developers. Our results suggest that slow developers may perform better at low prey biomass than fast developers due to their high attack rate whereas high density prey may favour fast developers due to their shorter prey handling time and higher consumption rates. This study is first attempt to evaluate predatory responses of experimentally selected lines of slow and fast developers. J. Exp. Zool. 323A: 745-756, 2015. © 2015 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call