Abstract

This study investigates the dynamics of predator–prey interactions with non-overlapping generations under the influence of fear effects, a crucial factor in ecological research. We propose a novel discrete-time model that addresses limitations of previous models by explicitly incorporating fear. Our primary question is: How does fear influence the stability of predator–prey populations and the potential for chaotic dynamics? We analyze the model to identify biologically relevant equilibria (fixed points) and determine the conditions for their stability. Bifurcation analysis reveals how changes in fear levels and predation rates can lead to population crashes (transcritical bifurcation) and complex population fluctuations (period-doubling and Neimark–Sacker bifurcations). Furthermore, we explore the potential for controlling chaotic behavior using established methods. Finally, two-parameter analysis employing Lyapunov exponents, spectrum, and Kaplan–Yorke dimension quantifies the chaotic dynamics of the proposed system across a range of fear and predation levels. Numerical simulations support the theoretical findings. This study offers valuable insights into the impact of fear on predator–prey dynamics and paves the way for further exploration of chaos control in ecological models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.