Abstract

In this study, we investigate the global dynamics of non-autonomous and autonomous systems based on the Leslie–Gower type model using the Beddington–DeAngelis functional response (BDFR) with time-independent and time-dependent model parameters. Unpredictable disturbances are introduced in the forms of feedback control variables. BDFR explains the feeding rate of the predator as functions of both the predator and prey densities. The global stability of the unique positive equilibrium solution of the autonomous model is determined by defining an appropriate Lyapunov function. The condition obtained for the global stability of the interior equilibrium ensures that the global stability is free from control variables, which is also a significant issue in the ecological balance control procedure. The autonomous system exhibits complex dynamics via bifurcation scenarios, such as period doubling bifurcation. We prove the existence of a globally stable almost periodic solution of the associated non-autonomous model. The different coefficients of the system are taken as almost periodic functions by generalizing periodic assumptions. The permanence of the non-autonomous system is established by defining upper and lower averages of a function. Our results also explain how the important hypothesis in ecology known as the “intermediate disturbance hypothesis” applies in predator–prey interactions. We show that moderate feedback intensity can make both the ordinary differential equation system and partial differential equation system more robust. The results obtained provide new insights into the protection of populations, where moderate feedback intensity can promote the coexistence of species and adjusting the intensity of the feedback in appropriate regions can control the population biomass while maintaining the stability of the system. Finally, the results obtained from extensive numerical simulations support the analytical results as well as the usefulness of the present study in terms of ecological balance and bio-control problems in agro-ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call